Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
Answer:
Explanation:
radius of circle r = 0.9 m.
(a ) In a motion on circular path , work done is zero because force ( centripetal force ) acts perpendicular to displacement .
( b )
Tension in string T = m ω²r
Putting the values
60 = .072 x ω² x 0.9
ω² = 926
ω = 30.4 rad /s
angle made in 20 revolutions θ = 20 x 2π = 126.6 rad
time taken = θ / ω
= 126.6 / 30.4
= 4.16 s .
Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
= K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
Answer:
<h3>The Moon brings perspective. Observing the Moon, and I mean really looking – sitting comfortably, or lying down on a patch of grass and letting her light fill your eyes, it's easy to be reminded of how ancient and everlasting the celestial bodies are. When I do this, it always puts my life into perspective.</h3>