Answer: Mass is 2,37 kg
Explanation: Weight G = mg, and g = 9.81 m/s² on Earth.
m = W/g = 23.2 N / 9.81 m/s²
Answer: The balanced equation for the given reaction is
.
Explanation:
A chemical equation which contains same number of atoms on both reactant and product side.
For example, 
Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance this equation, multiply
by 2 on reactant side and multiply
by 2. Hence, the equation will be re-written as follows.

Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Now, there are same number of atoms on both reactant and product side. So, this equation is balanced.
Thus, we can conclude that the balanced equation for the given reaction is
.
Recall that density is Mass/Volume. We are given the mL of liquid which is volume so all we need is mass now. We are given the mass of the granulated cylinder both with and without the liquid, so if we subtract them, we can get the mass of the liquid by itself. So, 136.08-105.56= 30.52g. This is the mass of the liquid. We now have all we need to find the density. So, let’s plug these into the density formula. 30.52g/45.4mL= 0.672 g/mL. This is our final answer since the problem requests the answer in g/mL, but be careful, because some problems in the future may ask for g/L requiring unit conversions. Also note that 30.52 was 4 sigfigs and 45.4 was 3 sigfigs, and so dividing them required an answer that was 3 sigfigs as well, hence why the answer is in the thousandths place
Increase in Oxygen shift the equilibrium towards reactant side.
<u>Explanation:</u>
6CO₂ + 6H₂O ⇄ C₆H₁₂O₆ + 6O₂
This is the reaction occurs in the photosynthesis of plants by means of sunlight. In this case, if the concentration of Oxygen increases or adding more oxygen to the product side will shift the equilibrium towards the reactant side according to the Le Chatlier's principle, which adjusts the equilibrium by itself for any changes that is increase or decrease in pressure, temperature or concentration of reactants or products.
Answer:
Hence, the wavelength of the photon associated is 1282 nm.
Explanation: