Your answer would be true. Because if we didn't have those pieces of evidence, we wouldn't know about a lot of the ancient civilizations that we know today without that. Small pieces of evidence like that can help us to determine how they lived, or what they used to do, or even what they ate.
Answer:
A nuclear winter is a climatic phenomenon that would follow the detonation of several atomic bombs in the event that a nuclear war broke out. These bombs would cause firestorms that would raise smoke, dust and particles into the atmosphere that would end up in the stratosphere and eventually spread throughout the globe.
Explanation:
That idea is far fetched, because even though those same particles would absorb sunlight, it would raise the temperature in the stratosphere and cause a decrease in temperature in the Earth's layer. Unable to seep the sun's rays, many plant species would die and this would affect the entire food chain.
In addition, that temperature rise in the stratosphere would destroy part of the ozone layer, causing greater exposure to ultraviolet rays. This would end up affecting health and further damaging plant species.
Answer:
U² = 142.86 N
U¹ = 357.14 N
Explanation:
Taking summation of the moment about point A, we get the following equilibrium equation: (taking clockwise direction as positive)

where,
W = weight of boy = 500 N
U² = reaction ay B = ?
Therefore,

<u>U² = 142.86 N</u>
Now, taking summation of forces on the plank. Taking upward direction as positive, for equilibrium position:

<u>U¹ = 357.14 N</u>
Answer:
d = 1.954 Km
Explanation:
given,
total distance, D = 2.5 Km
in stretch A to B =
speed = 99 Km/h = 99 x 0.278 = 27.22 m/s time =t
in stretch B to C
time = 3.4 s
In stretch C to D
speed = 48 Km/h = 48 x 0.278 = 13.34 m/s time =t
we know,
distance = speed x time
distance of BC
using equation of motion
v = u + a t
27.22 = 13.34 - a x 3.4
a = 4.08 m/s²
uniform deceleration is equal to 4.08 m/s²
distance traveled in BC


s = 68.94 m

3000 = 27.5 t + 68.94 + 13.33 t
40.83 t = 2931.06
t = 71.79 s
distance travel in AB
distance = s x t
d = 27.22 x 71.79
d = 1954 m
d = 1.954 Km
distance between A and B is equal to 1.954 Km.