Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:
where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:
Answer:
Option A.
A fan is turned from high speed to low speed.
Explanation:
It is important to note that air is also a fluid.
In a system, static pressure of air increases with the speed of rotation of the fan. This is because when the speed of the fan is increased, the force with which it is pushing the air molecules is increased. Since pressure is a relationship between force and area, the pressure of the air molecules will be increased.
Conversely, when the speed of the fan is reduced, the priming force on the air molecules will be reduced, hence the pressure of the air will drop.
This makes option A the correct option
Answer:
Also 3s.
Explanation:
Each component is independent in two dimensional motion. This means that <em>how much time does something take to reach the ground when dropped is independent from any horizontal velocity</em>. If at one run a drop lasts 3s, at another run with twice the (horizontal) velocity and same height will also last 3s, no matter what.
Answer:
life (N) of the specimen is 117000 cycles
Explanation:
given data
ultimate strength Su = 120 kpsi
stress amplitude σa = 70 kpsi
solution
we first calculate the endurance limit of specimen Se i.e
Se = 0.5× Su .............1
Se = 0.5 × 120
Se = 60 kpsi
and we know strength of friction f = 0.82
and we take endurance limit Se is = 60 kpsi
so here coefficient value (a) will be
a = ......................1
put here value and we get
a =
a = 161.4 kpsi
so coefficient value (b) will be
b =
b =
b = −0.0716
so here number of cycle N will be
N =
put here value and we get
N =
N = 117000
so life (N) of the specimen is 117000 cycles
Answer:
Approximately .
Explanation:
The formula for the kinetic energy of an object is:
,
where
- is the mass of that object, and
- is the speed of that object.
Important: Joule () is the standard unit for energy. The formula for requires two inputs: mass and speed. The standard unit of mass is while the standard unit for speed is . If both inputs are in standard units, then the output (kinetic energy) will also be in the standard unit (that is: joules,
Convert the unit of the arrow's mass to standard unit:
.
Initial of this arrow:
.
That's the same as the energy output of this bow. Hence, the efficiency of energy transfer will be:
.