Melting, of course. Just as how an ice cube melts to water.
Answer:

Explanation:
The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.
Also, we know that the centripetal force of an object describing a circular motion is given by:

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.
Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So
and
(Since
). Then, we get:

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).
Answer:
Fr = 48 [N] forward.
Explanation:
Suppose the movement is on the X axis, in this way we have the force of the engine that produces the movement to the right, while the force produced by the brake causes the vehicle to decrease its speed in this way the sign must be negative.
∑F = Fr
![F_{engine}-F_{brake} =F_{r}\\F_{r}=79-31\\F_{r}=48[N]](https://tex.z-dn.net/?f=F_%7Bengine%7D-F_%7Bbrake%7D%20%3DF_%7Br%7D%5C%5CF_%7Br%7D%3D79-31%5C%5CF_%7Br%7D%3D48%5BN%5D)
The movement remains forward, since the force produced by the movement is greater than the braking force.
Answer:
Density is affected by volume and mass.
Explanation:
Density is defined as the quantity of mass per unit of volume, or expressed mathematically, d = m/v.
Dark matter may explain <span>unexpected orbital velocities of stars in galaxies.</span>