It was named the Qumran seas scrolls.
<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
Answer:
Yes, Pb3(PO4)2.
Explanation:
Hello there!
In this case, according to the given balanced chemical reaction, it is possible to use the attached solubility series, it is possible to see that NaNO3 is soluble for the Na^+ and NO3^- ions intercept but insoluble for the Pb^3+ and PO4^2- when intercepting these two. In such a way, we infer that such reaction forms a precipitate of Pb3(PO4)2, lead (II) phosphate.
Regards!
It should be Cl
next to the capital C is an L btw