Answer:
0.6
Explanation:
Angular acceleration is equal to Net Torque divided by rotational inertia, which is the rotational equivalent to Newton’s 2nd Law. Therefore, angular acceleration is equal to 3.6/6 which is 0.6. Hope this helped!
Answer: 321 J
Explanation:
Given
Mass of the box 
Force applied is 
Displacement of the box is 
Velocity acquired by the box is 
acceleration associated with it is 

Work done by force is 

change in kinetic energy is 

According to work-energy theorem, work done by all the forces is equal to the change in the kinetic energy
![\Rightarrow W+W_f=\Delta K\quad [W_f=\text{Work done by friction}]\\\\\Rightarrow 375+W_f=54\\\Rightarrow W_f=-321\ J](https://tex.z-dn.net/?f=%5CRightarrow%20W%2BW_f%3D%5CDelta%20K%5Cquad%20%5BW_f%3D%5Ctext%7BWork%20done%20by%20friction%7D%5D%5C%5C%5C%5C%5CRightarrow%20375%2BW_f%3D54%5C%5C%5CRightarrow%20W_f%3D-321%5C%20J)
Therefore, the magnitude of work done by friction is 
Answer : The final pressure in the two containers is, 2.62 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

Thus, the expression for final pressure in the two containers will be:


where,
= pressure of N₂ gas = 4.45 atm
= pressure of Ar gas = 2.75 atm
= volume of N₂ gas = 3.00 L
= volume of Ar gas = 2.00 L
P = final pressure of gas = ?
V = final volume of gas = (4.45 + 2.75) L = 7.2 L
Now put all the given values in the above equation, we get:


Thus, the final pressure in the two containers is, 2.62 atm
In order for a system to be in equilibrium , two conditions must be met. Net force must be 0.
A proton has a positive (1+) charge