Answer: The answer is option A.
Explanation: Particles of matter are packed more loosely in the ground than in the air. This is true because it doesn't have thig like buildings and people stopping the sound waves.
Answer:
The total distance, side to side, that the top of the building moves during such an oscillation = 31 cm
Explanation:
Let the total side to side motion be 2A. Where A is maximum acceleration.
Now, we know know that equation for maximum acceleration is;
A = α(max) / [(2πf)^(2)]
So 2A = 2[α(max) / [(2πf)^(2)] ]
α(max) = (0.025 x 9.81) while frequency(f) from the question is 0.2Hz.
Therefore 2A = 2 [(0.025 x 9.81) / [((2π(0.2)) ^(2)] ] = 2( 0.245 / 1.58) = 0.31m or 31cm
"<span>increases when pressure decreases". Pressure and volume of gasses are related from Boyle's law, which states that Pressure is proportional to 1/V, so as pressure decreases, volume increases. </span>
The momentum of an object is equivalent to the product of the object's mass and velocity. Computing the momentum for each ball:
A- 15 * 0.7 = 10.5
B- 5.5 * 1.2 = 6.6
C- 5.0 * 2.5 = 12.5
D- 1.5 * 5.0 = 7.5
Therefore, ball C has the greatest momentum.