Explanation:
Given
initial velocity(v_0)=1.72 m/s

using 
Where v=final velocity (Here v=0)
u=initial velocity(1.72 m/s)
a=acceleration 
s=distance traveled

s=0.214 m
(b)time taken to travel 0.214 m
v=u+at


t=0.249 s
(c)Speed of the block at bottom

Here u=0 as it started coming downward

v=1.72 m/s
Answer:

Explanation:
Given that,
Heat required, Q = 1200 J
Mass of the object, m = 20 kg
The increase in temperature, 
We need to find the specific heat of the object. The heat required to raise the temperature is given by :

So, the specific heat of the object is
.
Answer:
Explanation:
Given that,
Mass of block
M = 2kg
Spring constant k = 300N/m
Velocity v = 12m/s
At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0
xo = 0
It velocity is 12m/s at t=0
Then, it initial velocity is
Vo = 12m/s
Then, amplitude is given as
A = √[xo + (Vo²/ω²)]
Where
xo is the initial amplitude =0
Vo is the initial velocity =12m/s
ω is the angular frequency and it can be determine using
ω = √(k/m)
Where
k is spring constant = 300N/m
m is the mass of object = 2kg
Then,
ω = √300/2 = √150
ω = 12.25 rad/s²
Then,
A = √[xo + (Vo²/ω²)]
A = √[0 + (12²/12.5²)]
A = √[0 + 0.96]
A = √0.96
A = 0.98m
Answer:
The experimental scientist