Answer:
The copper wire stretches 6.25 cm and the steel wire stretches 3.75 cm.
Explanation:
Young's modulus is defined as:
E = stress / strain
E = (F / A) / (dL / L)
E = (F L) / (A dL)
Solving for dL:
dL = (F L) / (A E)
The wires have the same force, length, and cross-sectional area. So:
dL₁ + dL₂ = (FL/A) (1/E₁ + 1/E₂)
Given that dL₁ + dL₂ = 0.10 m, E₁ = 20×10¹⁰ N/m², and E₂ = 12×10¹⁰ N/m²:
0.10 = (FL/A) (1/(20×10¹⁰) + 1/(12×10¹⁰))
FL/A = 0.75×10¹⁰ N/m
Solving for dL₁ and dL₂:
dL₁ = (FL/A) / E₁
dL₁ = (0.75×10¹⁰ N/m) / (20×10¹⁰ N/m²)
dL₁ = 0.0375 m
dL₂ = (FL/A) / E₂
dL₂ = (0.75×10¹⁰ N/m) / (12×10¹⁰ N/m²)
dL₂ = 0.0625 m
The copper wire stretches 6.25 cm and the steel wire stretches 3.75 cm.
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
Answer:
see explanation
Explanation:
Given that,
velocity of 1.50 km/s = 1.50 × 10³m/s
acceleration of 2.00 ✕ 1012 m/s2
electric field has a magnitude of strength of 18.0 N/C
![\bar F= q[\bar E + \bar V \times \bar B]\\\\\bar F = [\bar E + \bar V \times ( B_x \hat i +B_y \hat j +B_z \hat z )]\\\\\\m \bar a = [\bar E + \bar V \times ( B_x \hat i +B_y \hat j +B_z \hat z )]](https://tex.z-dn.net/?f=%5Cbar%20F%3D%20q%5B%5Cbar%20E%20%2B%20%5Cbar%20V%20%5Ctimes%20%5Cbar%20B%5D%5C%5C%5C%5C%5Cbar%20F%20%3D%20%5B%5Cbar%20E%20%2B%20%5Cbar%20V%20%5Ctimes%20%28%20B_x%20%5Chat%20i%20%2BB_y%20%5Chat%20j%20%2BB_z%20%5Chat%20z%20%29%5D%5C%5C%5C%5C%5C%5Cm%20%5Cbar%20a%20%3D%20%5B%5Cbar%20E%20%2B%20%5Cbar%20V%20%5Ctimes%20%28%20B_x%20%5Chat%20i%20%2BB_y%20%5Chat%20j%20%2BB_z%20%5Chat%20z%20%29%5D)
![9.1 \times 10^-^3^1 \times 2\times 10^1^2 \hat k=-1.6\times10^-^1^9 \hat k [18\hat k+ 1.5\times 10^3 \hat i \times (B_x \hat i +B_y \hat j +B_z \hat k)]](https://tex.z-dn.net/?f=9.1%20%5Ctimes%2010%5E-%5E3%5E1%20%5Ctimes%202%5Ctimes%2010%5E1%5E2%20%5Chat%20k%3D-1.6%5Ctimes10%5E-%5E1%5E9%20%5Chat%20k%20%5B18%5Chat%20k%2B%201.5%5Ctimes%2010%5E3%20%5Chat%20i%20%5Ctimes%20%28B_x%20%5Chat%20i%20%2BB_y%20%5Chat%20j%20%2BB_z%20%5Chat%20k%29%5D)



