I know its not the answer but i had to put something bc im jus setting this up im rlly sorry for the inconvenience but i looked it up n got a quizlet n the answer on there was 1.81x10^-4 if it helps
Answer:

Explanation:
Hello there!
In this case, according to the attached solubility chart, it is possible for us to realize that about 88 grams of KNO3 are soluble at 50 °C but just 30 grams are soluble at 20 °C in the same 100 g of water.
In such a way, the crystalized mass of this solute can be calculated by subtracting the mass at 50 °C and the mass at 20 °C:

Best regards!
We are given the resistance and voltage of this lamp and we are asked to find the current; the equation that relates these together is Ohm’s Law, V = IR. Simply plug and solve:
V = IR
(220 V) = I(484 Ohms)
I = 0.4545 Amps
The lamp has a current of 0.4545 Amps passing through it under these conditions.
Hope this helps!
For the purpose we will here use t<span>he ideal gas law:
p</span>×V=n×R×<span>T
V= </span><span>5.0 L
T= </span><span>373K
p= </span><span>203kPa
</span><span>
R is </span> universal gas constant, and its value is 8.314 J/mol×<span>K
</span>
Now when we have all necessary date we can calculate the number of moles:
n=p×V/R×T
n= 203 x 5 / 8.314 x 373 = 0.33 mole
Question 9. The first one is the smallest. Anything with a negative exponent is going to be less than 1, the .00000241. The exponent tells you the number of zeroes to the right of the decimal point. Farther to right gets smaller and smaller.
Question 10. The last one is true. If the last digit is smaller than 5, drop the digit, and do not change. (If it is a 5 or larger, the digit before it would round up)