The ideal gas law may be written as

where
p = pressure
ρ =density
T = temperature
M = molar mass
R = 8.314 J/(mol-K)
For the given problem,
ρ = 0.09 g/L = 0.09 kg/m³
T = 26°C = 26+273 K = 299 K
M = 1.008 g/mol = 1.008 x 10⁻³ kg/mol
Therefore

Note that 1 atm = 101325 Pa
Therefore
p = 2.2195 x 10⁵ Pa
= 221.95 kPa
= (2.295 x 10⁵)/101325 atm
= 2.19 atm
Answer:
2.2195 x 10⁵ Pa (or 221.95 kPa or 2.19 atm)
Answer: 13.9 g of
will be produced from the given mass of oxygen
Explanation:
To calculate the moles :

The balanced chemical reaction is:
According to stoichiometry :
7 moles of
produce = 6 moles of 
Thus 0.900 moles of
will produce =
of 
Mass of 
Thus 13.9 g of
will be produced from the given mass of oxygen
Answer : The maximum amount of nickel(II) cyanide is 
Explanation :
The solubility equilibrium reaction will be:

Initial conc. 0.220 0
At eqm. (0.220+s) 2s
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ni^{2+}][CN^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BNi%5E%7B2%2B%7D%5D%5BCN%5E-%5D%5E2)
Now put all the given values in this expression, we get:


Therefore, the maximum amount of nickel(II) cyanide is 
Sandy soil because the sand will erode faster then the clay will causeing the well to cave in
Answer:
The answer is <u>applied research</u>
Explanation:
Pure research becomes <u>applied research</u> when scientists develop a hypothesis based on the data and try to solve a specific problem.
This is because the pure research try to understand, predict or explain the behavior of different phenomena <em>(the data)</em> while the applied research try to develop new technologies or methods (<em>hypothesis)</em> to take part, intervene and/or create changes on these phenomena and solve a <em>specific problem.</em>