Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Equation for Half life :
A = a(0.5)^(t/h)
A is current amount, "a" is initial amount, h is halflife, t is time
5 = 40(0.5)^(t/1.3x10^9)
5/40 = (0.5)^(t/1.3x10^9)
take the log of both sides , power rule
Log(5/40) = (t/1.3x10^9) * Log(0.5)
(1.3x10^9) * Log(5/40) / Log(0.5) = t
3.9x10^9 years = t
And if you think about what a half life is, the time it take for the amount to reduce to half.
40/2 = 20
20/2 = 10
10/2 = 5
It went through 3 half-lifes
3 * 1.3x10^9 = 3.9x10^9 years
Answer:
1.750×10^-6 g
Explanation:
we know n is 10^-9. all you have to do is to replace n with 10^-9.
so the answer is
1.750×10^3×10^-9 g
which is equal to 1.750×10^-6 g
if anything is unclear, ask freely.
The one from the cupboard because it is warmer (has more thermal energy) than the one from the refrigerator. When a liquid becomes warmer, the solubility of a gas becomes lower. Therefore, there is already more CO2 in its gaseous state when the soda is warm.
₁₅P 1s²2s²2p⁶3s²3p³
₁₆S 1s²2s²2p⁶3s²3p⁴
It is because: 1) phosphorus have 3 unpaired electrons in 3p shell, and that is more stable than 3p⁴ in sulfur, so it ie easier to remove 1 paired electron in sulphur to became 3p³.
2) repulsion in 3p shell in sulfur between 2 paired electrons is higher, so it is easier to remove that electron.