Average speed = (total distance covered) / (time to cover the distance)
Ian's total distance covered = (2km + 0.5km + 2.5km) = 5 km.
His time to cover the distance = 3 hours.
Average speed = (5 km) / (3 hrs)
Average speed = (5/3) (km/hr)
<em>Average speed = 1.67 km/hr</em>
Exons And Introns differ because Exons code for protein and Introns do not.
so your answer would be: Exons code for Proteins
Are you in K12?
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Answer:
Your answer here is D
Explanation:
Slowly pressing your breaks will help ensure you are not hit by the other car. If they hit you its their fault. Hope this helps :)!
<span>light colored and smooth surface would most likely be the best reflector of electromagnetic energy.Light, shiny surfaces are the best reflectors of radiation and they will allow the waves to reflect and bounce off rather than absorb. we can consider mirror as the example ,it will only reflect the light energy falling on them and it will not absorb. The darker coloured and rough surfaced substances will definitely absorb some amount of light falling on it. so light coloured smooth or shiny surfaced material would be the best reflector for electromagnetic energy.</span>