The correct answer is (b.) y/x hertz. That is because the formula to get the frequency is f = v / w. The following values (v=y meters / second; wavelength = x meters) must be substituted to the equation, which leaves you y/x hertz.
Answer:
0.2286 m, 0.686 m and 1,143 m
therefore we see that there is respect even where the intensity is minimal
Explanation:
Destructive interference to the two speakers is described by the expression
Δr = (2n +1) λ/2
where r is the distance, λ the wavelength and n an integer indicating the order of the interference
let's locate the origin on the left speaker
let's find the wavelength with the equation
v = λ f
λ = v / f
we substitute
Δr = (2n + 1) v / 2f
let's calculate for difference values of n
Δr = (2n +1) 343/(2 750)
Δr = (2n + 1) 0.2286
we locate the different values for a minimum of interim
n Δr (m)
0 0.2286
1 0.686
2 1,143
therefore we see that there is respect even where the intensity is minimal
Answer:
b) Gravity
Explanation:
Gravity acts all of the time, when you apply force to a projectile it has to be more than the forces of the gravity and air resistance together so the projectile can move, when the rock is at the top of its trajectory the force that you applied at the beginning is getting lost, so the other forces (air resistance and gravity) make the rock fall to the floor.
Explanation:
1. Acceleration is the change in velocity over time.
a = Δv / Δt
a = (29.8 m/s − 37.1 m/s) / 3 s
a = -2.43 m/s²
2. Work equals force times distance.
W = Fd
W = (87.3 N) (2.04 m)
W = 178 J
3. Power is work per time.
P = W / t
267 W = 1250 J / t
t = 4.68 s
If the object being represented is going both up and to the right.