Answer:
15.66 rad/s
Explanation:
The vertical motion and horizontal motion are independent of each other.
t = √ ( 2 s/ g) where t = time for the ball to reach the ground and s is the height of the cliff = 18.0 m
t = √ ( 36 / 9.81 ) = 1.916 secs
horizontal distance travel = ut where u is the horizontal velocity of the stone = 30 × r (radius)
tangential velocity V = angular velocity ( ω) × radius
distance traveled = ω × r × t = 30 × r
radius cancelled on both side
ω = 30 / 1.9156 = 15.66 rad/s
Answer:
1.991 × 10^(8) N/m²
Explanation:
We are told that its volume increases by 9.05%.
Thus; (ΔV/V_o) = 9.05% = 0.0905
To find the force per unit area which is also pressure, we will use bulk modulus formula;
B = Δp(V_o/ΔV)
Making Δp the subject gives;
Δp = B(ΔV/V_o)
Now, B is bulk modulus of water with a value of 2.2 × 10^(9) N/m²
Thus;
Δp = 2.2 × 10^(9)[0.0905]
Δp = 1.991 × 10^(8) N/m²
Speed is distance over time, learn that formula and look at the image
By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617