Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
Answer:
c
Explanation:
though c is wider it has more water.
S= 343m/s
F=256Hz
WL= 343ms/256-1
WL=V/F
= 1.339844m
Pls give me brainliest!!!
Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m