1 + tan ² Ф=sec²Ф
1+(12/5)²=sec²Ф
169/25=sec² Ф
sec Ф=⁺₋√(169/25)=⁺₋13/5
sec Ф=1/cos Ф ⇒cosФ=1/sec Ф
cos Ф>0 ⇔ sec Ф>0 ⇔ sec Ф=+ 13/5
cos Ф=1/secФ
cos Ф=1 / 13/5=5/13
we can calculate the sin Ф, with this method.
sin²Ф + cos²Ф=1 ⇒ sin Ф=⁺₋√(1-cos² Ф)
sin Ф=⁺₋√[1-(5/13)²]=⁺₋12/13
like cos Ф>0 and tan Ф>0 ⇒ sin Ф>0 ⇒sin Ф=12/13
answer: d.12/13
other method
tan Ф=sin Ф / cos Ф
12/5=sin Ф / 5/13
sin Ф=(12/5)*(5/13)=12/13
answer: d.12/13
For this problem, all you need to do is find the three #'s that add up to 156.
So, lets look at the answers and add them up.
A. 50, 52, 54
50 + 52 + 54 = 156
B. 51,52,53
51 + 52 + 53 = 156
C. 49,50,51
49 + 50 + 51 = 150
D. 49,51,53
49 + 51 + 53 = 153
We get the answers (50,52,54) and (51,52,53)
Now, consecutive numbers are numbers that in order, like 1,2,3.
Therefore, the answer is (51,52,53)
I’m pretty sure it is 1 because if you have 3 half’s that equals 1 and 1/2 and then you add 1/2 which equals two so if you multiply it by X and it still equals two then X would have to be 1
Answer:
cos210=cos(180+30)=−cos30=−√32 . sin210=sin(180+30)=−sin30=−12 . 3(cos210+isin210) =3(−√32)+3i(−12). −(32)√3−(32)i. My favourite way of seeing that sin30=12 and cos30=√32 is ...
Step-by-step explanation:
But that's what I say personally