Answer:
a) 0.0007326
b) 0.03223
c) 0.2418
d) 0.2418
Explanation:
To find different probabilities for the selection of components among eleven good and four defective components, we will use the Combination.
a) 

b) 

c) 

d) 

Answer: 1.2m/s^2
Explanation: the force exerted on the car is 900N upwards
The mass of the car is 750kg
According to Newton's third law acceleration is proportional to force
F = ma
900 = 750a
a = 900/750
a = 1.2m/s^2
Answer: hope it helps you...❤❤❤❤
Explanation: If your values have dimensions like time, length, temperature, etc, then if the dimensions are not the same then the values are not the same. So a “dimensionally wrong equation” is always false and cannot represent a correct physical relation.
No, not necessarily.
For instance, Newton’s 2nd law is F=p˙ , or the sum of the applied forces on a body is equal to its time rate of change of its momentum. This is dimensionally correct, and a correct physical relation. It’s fine.
But take a look at this (incorrect) equation for the force of gravity:
F=−G(m+M)Mm√|r|3r
It has all the nice properties you’d expect: It’s dimensionally correct (assuming the standard traditional value for G ), it’s attractive, it’s symmetric in the masses, it’s inverse-square, etc. But it doesn’t correspond to a real, physical force.
It’s a counter-example to the claim that a dimensionally correct equation is necessarily a correct physical relation.
A simpler counter example is 1=2 . It is stating the equality of two dimensionless numbers. It is trivially dimensionally correct. But it is false.
Answer:
Push because the force you use up is greater then down
Initial speed of the skateboarder (u) = 2 m/s
Distance covered (s) = 18 m
Time taken = 3.3 seconds
Let the acceleration be a.
Using seconds equation of motion:



a = 2.09 m/s^2
Now, Acceleration down the incline = g Sin Θ
g Sin Θ = a
9.8 × Sin Θ = 2.09
Sin Θ = 
Θ = 12.31°
Hence, the angle of the inclined plane is: Θ = 12.31°