<span>
<u><em>Answer:</em></u>498.82 cg is equivalent to 4988.2 mg
<u><em>Explanation:</em></u>cg stands form centigrams
mg stands for milligrams
From the standards of conversion, to convert from centi to milli, we multiply the amount ny 10
<u>This means that:</u>
1 centigram = 10 milligram
To convert 498.82 cg to mg, all we have to do is <u>cross multiplication</u> as follows:
1 cg ..................> 10 mg
498.82 cg .........> ?? mg
498.82 cg = </span>

<span> = 4988.2 mg
Hope this helps :)</span>
Answer
Initial radius of the artery is (1.1 cm) / 2 = 0.55 cm
final radius of the artery is (0.90 cm) / 2 = 0.45 cm
initial velocity of the blood is 17 cm/s
Using equation of continuity is
A₁v₁=A₂v₂
π r₁² x v₁ = π r₂² x v₂
r₁² x v₁ = r₂² x v₂
0.55² x 17 =0.45² x v₂
v₂=25.39 cm/s
Bernoulli's equation is
rho is the density of blood = 1060 kg/m^3
Answer:
Distance = 25000000 miles
Time = 50 hours
Explanation:
Venus is the closest planet to Earth. It is about 25 million miles away from Earth. Its precise distance depends on where both Venus and Earth are in their respective orbits
Given that
Speed V = 500000 mph
Distance d = 25 000,000 miles
Speed = distance/ time
Time = distance/speed
Time = 25000000/500000
Time = 50 hours
It will therefore take 50 hours to get to venus at that speed.
M = 10.0 g, the mass of the iron sample
ΔT = 75 - 25.2 = 49.5°C, the decrease in temperature
c = 0.449 J/(g-°C), the specific heat of iron
The heat released is
Q = m*c*ΔT
= (10.0 g)*(0.449 J/(g-°C))*(49.5 C)
= 222.255 J
Answer: 222.3 J (nearest tenth)
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2