Protons are held inside nucleous with neutrons with large amount of force. So mere rubbing doesn't help in breaking the nucleous of an atom. But electrons are far from the nucleous and the force of attraction is smaller. So electrons can jump readily while protons can't
From the calculation, the concentration in parts per billion is 6 ppb.
<h3>What is ppb?</h3>
The term ppb refers to the concentration of a substance in parts per billion. We obtain the ppb using the formula;
Mass of solute/ Mass of solution * 10^9
Now, 1L = 1000cm^3 = 1000 g
The concertation in ppb = 6 * 10^-6 g/1000 g * 10^9
= 6 ppb
Learn more about parts per billion:brainly.com/question/9179966
#SPJ1
Answer:
0.00268 M
Explanation:
To find the new molarity, you need to (1) find the moles of CuSO₄ (via the molarity equation using the beginning molarity and volume) and then (2) find the new molarity (using the moles and combined volume). Your final answer should have 3 sig figs to match the given values.
<u>Step 1:</u>
3.00 mL / 1,000 = 0.00300 L
Molarity = moles / volume (L)
0.0250 M = moles / 0.00300 L
(0.0250 M) x (0.00300 L) = moles
7.50 x 10⁻⁵ = moles
<u>Step 2:</u>
25.0 mL / 1,000 = 0.0250 L
0.0250 L + 0.00300 L = 0.0280 L
Molarity = moles / volume (L)
Molarity = (7.50 x 10⁻⁵ moles) / (0.0280 L)
Molarity = 0.00268 M
Answer:
a) S = 0.0152 mol/L
b) S' = 4.734 g/L
Explanation:
S 2S S...............in the equilibrium
- Ksp = 1.4 E-5 = [ Ag+ ]² * [ SO42-]
a) molar solubility:
⇒ Ksp = ( 2S) ² * S = 1.4 E-5
⇒ 4S² * S = 1.4 E-5
⇒ S = ∛ ( 1.4 E-5 / 4 )
⇒ S = 0.0152 mol/L
b) solubility ( S' ) in grams per liter:
∴ Mw Ag2SO4 = 311.799 g/mol
⇒ S' = 0.0152 mol/L * ( 311.799 g/mol )
⇒ S' = 4.734 g/L