Explanation:
When the water droplets are placed in oily surface, oil being non-polar, thus there will not be adhesive force between water and oil.
Thus, surface tension is the factor which is responsible for shape of the water droplets to be spherical. The water molecules are pulled into the spherical shape by the action of the cohesive forces which is acting on the surface layer. As, the medium is totally different outside, the water molecules tend to get the minimum area and thus, forming spherical droplets.
Answer:
This solution acts as an efficient buffer
Explanation:
the pH of a buffer solution can be described like this: ![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
[acid]=[acetic acid]=
[base]=[sodium acetate]=
replacing, 
If we add an acid, pH will decrease a little bit and if we add a base, pH wil increase a little bit.
lets supose that we change the rate by increasing [base] to 0.1, then

and now lets supose that we increase [acid] to 0.1 
Big changes in concentration of base or acid doesn´t produce big changes in pH, in that way the mix of sodium acetate with acetic acid is a good buffer solution.
Red Arrows are used when there is a turning lane. Means there is a signal for more than one direction. Example would be one for the left turn, one for the right turn.
<span>Solid red light means that it's a straight ahead.</span>
<span>To solve this we assume that the gas inside the balloon is an ideal </span>gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant volume pressure and number of moles of the gas
the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 25 x 29.4 / 75
P2 = 9.8 kPa
Sodium Sulfate
= Na2(SO4) meaning there are two ions of Na+ in one mole of Sodium Sulfate the M
stands for Molarity, defined as Molarity = (moles of solute)/(Liters of
solution), So if the Na2SO4 solution is 3.65M that means one Liter of has 3.65
moles of Na2SO4, the stoichiometry of Na2SO4 shows that there would be two Na+
ions in solution for every one Na2SO4.
Therefore if
3.65 moles of Na2SO4 was to dissolve, it would produce 7.3 moles of Na+, and
since this is still a theoretical solution, we can assume 1 L of solution.
Finally we find
[Na+] = 2*3.65 = 7.3M
Use the same
logic for parts b and c