Answer:
<h3>2Al+ Fe2O3 gives 2Fe + Al2O3. The given reaction is a redox reaction. As oxidation and reduction are taking place simultaneously.</h3>
Explanation:
like this...Identify oxidation and reduction with their agents:
<h3>•2Al+ Fe2O3 →2Fe + Al2O3</h3>
<h3>•Fe2O3 is reduced to Fe whereas Al is oxidized to Al2O3</h3>
<h3>In the above reaction:</h3>
<h3>Oxidizing agent:Fe2O3</h3>
<h3>Reducing agent:Al</h3>
I hope it's help you (◠‿・)—☆
The heavy one because mass times force is equal to speed. The lighter one has less mass to it goes faster without as much effort. I hope that helps!
Answer:
1. Number of gas particles (atoms or molecules)
2. Number of moles of gas
3. Average kinetic energy
Explanation:
Since the two gas has the same volume and are under the same conditions of temperature and pressure,
Then:
1. They have the same number of mole because 1 mole of any gas at stp occupies 22.4L. Now both gas will occupy the same volume because they have the same number of mole
2. Since they have the same number of mole, then they both contain the same number of molecules as explained by Avogadro's hypothesis which states that at the same temperature and pressure, 1 mole of any substance contains 6.02x10^23 molecules or atoms.
3. Being under the same conditions of temperature and pressure, they both have the same average kinetic energy. The kinetic energy of gas is directly proportional to the temperature. Now that both gas are under same temperature, their average kinetic energy are the same.
Answer:
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Explanation:
Hello,
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Best regards.
This is an application of Boyle's law:
P₁V₁ = P₂V₂. we don't have to convert volume and pressure to standard forms. we can even use the pressure with mmHg
1 atm = 760 mmHg
V₂ = P₁V₁ / P₂ = 745 x 500 / 760 = 490 ml
Note that here we assume constant temperature