Answer:
5
Explanation:
all you do is the math expression
Answer:
14 mol O₂
Explanation:
The reaction between CO and O₂ is the following:
CO + O₂ → CO₂
We balance the equation with a coefficient 2 in CO and CO₂ to obtain the same number of O atoms:
2CO + O₂ → 2CO₂
As we can see from the balanced equation, 1 mol of O₂ is required to react with 2 moles of CO. Thus, the conversion factor is 1 mol of O₂/2 mol CO. We multiply the moles of CO by the conversion factor to calculate the moles of O₂ that are required:
28 mol CO x 1 mol of O₂/2 mol CO = 14 mol O₂
Pressures simply add. If the partial pressure of gas is three and the partial pressure of water is five, the total pressure is eight. Find the partial pressure for water at the temperature of your experiment, subtract it from your <span>pressure reading.</span>
Answer:
1.2044 x 10^24 particles
Explanation:
Assuming this is<u> STP</u>....then this is 2 moles ( each mole = 22.4 L/mole)
2 moles = 2 * 6.022 x 10^23 = 1.2044 x 10^24
Answer:
The rate law is rate = k[NO][O₃]
Option E) is the right answer.
Explanation:
Hi there!
For this generic reaction:
A + B → products
the rate law will be:
rate = k[A]ⁿ[B]ᵃ
this reaction is n-order in A and a-order in B. The overall reaction is the sum of the orders of each reactant, in this case:
Overall order of the reaction = n + a
In our problem, we know that the reaction is first order in O₃ and second order overall. Then:
Overall order of the reaction = Order in NO + Order in O₃
2 = n + 1
2 - 1 = n
n = 1
Then, the reaction is first order in NO and first order in O₃.
The rate law will be:
rate = k[NO][O₃]
The right answer is the option E).