Less reactive than Group<span> I </span>elements<span>. The reasoning for this is because it is </span>more<span> difficult to lose two electrons compared to losing just </span>one<span> electron. They mostly React with water to form alkaline solutions. ...Now This is because the smaller an atom the closer the outer electrons are to the nucleus.</span>
I couldn't really find anything about the growth time but it does say that it could remain viable in soil for up to 40 years
The formula of Iron(III) oxide is Fe2O3
In order to calculate the mass of iron in a given sample of iron(III) oxide, we must first know the mass percentage of iron in iron(III) oxide. This is calculated by:
[mass of iron in one mole of iron(III) oxide/ mass of one mole of iron(III) oxide] * 100
= [(moles of iron * Mr of iron) / (moles of Iron * Mr of Iron + moles of Oxygen * Mr of Oxygen)] * 100
= [(2 * 56) / (2 * 56 + 3 * 16)] * 100
= (112 / 160) * 100
= 70%
Thus, in a 100g sample, the weight of iron will be:
100 * 70%
= 70 grams
Answer:
2J/g°C
Explanation:
Q = 5000J
Initial temperature (T1) = 20°C
Final temperature (T2) = 70°C
Specific heat capacity (c) = ?
Heat energy (Q) = mc∇T
Q = mc∇T
Q = mc(T2 - T1)
5000 = 50 × c × (70 - 20)
5000 = 50c × 50
5000 = 2500c
c = 5000 / 2500
c = 2J/g°C
The specific heat capacity of the substance is 2J/g°C