Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon).
Explanation: pls mark brainliest :))
D is the answer since it is changing the element.
Benedict's solution is used to test simple sugars, such as glucose. It is blue solution, when sugar is present, it turns to orange / brick red. Depends on the concentration of sugar.
Answer:
a..312 I guesss kkkkkkkkkkkkkkkkkk
Explanation:
(a) The given data is as follows.
Load applied (P) = 1000 kg
Indentation produced (d) = 2.50 mm
BHI diameter (D) = 10 mm
Expression for Brinell Hardness is as follows.
HB =
Now, putting the given values into the above formula as follows.
HB =
=
=
= 200
Therefore, the Brinell HArdness is 200.
(b) The given data is as follows.
Brinell Hardness = 300
Load (P) = 500 kg
BHI diameter (D) = 10 mm
Indentation produced (d) = ?
d = ![\sqrt{(D^{2} - [D - \frac{2P}{HB} \pi D]^{2})}](https://tex.z-dn.net/?f=%5Csqrt%7B%28D%5E%7B2%7D%20-%20%5BD%20-%20%5Cfrac%7B2P%7D%7BHB%7D%20%5Cpi%20D%5D%5E%7B2%7D%29%7D)
= ![\sqrt{(10 mm)^{2} - [10 mm - \frac{2 \times 500 kg}{300 \times 3.14 \times 10 mm}]^{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B%2810%20mm%29%5E%7B2%7D%20-%20%5B10%20mm%20-%20%5Cfrac%7B2%20%5Ctimes%20500%20kg%7D%7B300%20%5Ctimes%203.14%20%5Ctimes%2010%20mm%7D%5D%5E%7B2%7D%7D)
= 4.46 mm
Hence, the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used is 4.46 mm.