Answer:
CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base or vice versa.
For the acetic acid buffer, CH₃CO₂H is the weak acid and its conjugate base is the ion without H⁺, that is CH₃CO₂⁻. The equilibrium equation in water knowing this is:
<h3>CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺</h3>
<em>In the equilibrium, the acid is dissociated in the conjugate base and the hydronium ion.</em>
The pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
<h3>What is pH? </h3>
pH is defined as the concentration of the hydrogen bond which is released or gained by the species in the solution which depicts the acidity and basicity of the solution.
<h3>What is pOH? </h3>
pOH is defined as the concentration of the hydronium ion present in solution.
pOH value is inversely proportional to the value of pH.
pH value increases, pOH value decreases and vice versa.
Given,
Total H+ ions = 2.95 ×10^(-12)M
<h3>Calculation of pH</h3>
pH = -log[H+]
By substituting the value of H+ ion in given equation
= log(2.95× 10^(-12) )
= 13.5
Thus we find that the pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
learn more about pH:
brainly.com/question/12942138
#SPJ4
4 Hydrogen Atoms should be correct. Because the 4 infront of it signifies the amount of hydrogen. It would also be 4 hydrogen atoms if it were written as H4N3, because the 4 is still around the H (as long as the 4 is under scored)