<u>Answer:</u> The temperature of the solution in Kelvins is 422.356 K
<u>Explanation:</u>
Temperature is defined as the measure of coldness or hotness of a body. It also determines the average kinetic energy of the particles in a body.
This term is expressed in degree Celsius, degree Fahrenheit and Kelvins. All these units are interchangeable.
The S.I unit of temperature is Kelvins.
We are given:
Temperature of a solution = 
Conversion used to convert degree Celsius and Kelvins is:
![T(K)=[273.15+T(^oC)]](https://tex.z-dn.net/?f=T%28K%29%3D%5B273.15%2BT%28%5EoC%29%5D)

Hence, the temperature of the solution in Kelvins is 422.356 K
Answer:

Explanation:
Hello,
In this case, for the given reaction at equilibrium:

We can write the law of mass action as:
![Keq=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
That in terms of the change
due to the reaction extent we can write:
![Keq=\frac{x}{([CO]_0-x)([H_2]_0-2x)^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7Bx%7D%7B%28%5BCO%5D_0-x%29%28%5BH_2%5D_0-2x%29%5E2%7D)
Nevertheless, for the carbon monoxide, we can directly compute
as shown below:
![[CO]_0=\frac{0.45mol}{1.00L}=0.45M\\](https://tex.z-dn.net/?f=%5BCO%5D_0%3D%5Cfrac%7B0.45mol%7D%7B1.00L%7D%3D0.45M%5C%5C)
![[H_2]_0=\frac{0.57mol}{1.00L}=0.57M\\](https://tex.z-dn.net/?f=%5BH_2%5D_0%3D%5Cfrac%7B0.57mol%7D%7B1.00L%7D%3D0.57M%5C%5C)
![[CO]_{eq}=\frac{0.28mol}{1.00L}=0.28M\\](https://tex.z-dn.net/?f=%5BCO%5D_%7Beq%7D%3D%5Cfrac%7B0.28mol%7D%7B1.00L%7D%3D0.28M%5C%5C)
![x=[CO]_0-[CO]_{eq}=0.45M-0.28M=0.17M](https://tex.z-dn.net/?f=x%3D%5BCO%5D_0-%5BCO%5D_%7Beq%7D%3D0.45M-0.28M%3D0.17M)
Finally, we can compute the equilibrium constant:

Best regards.
Answer:It is necessary to use Kelvin for the temperature and it is conventional to use the SI unit of liters for the volume.
Explanation:
However, pressure is commonly measured in one of three units: kPa, atm, or mmHg. Therefore, can have three different values.