Answer:
relating to or denoting the business of entertaining clients, conference delegates, or other official visitors.
Answer:
8.354 nanometers
Explanation:
To treat a diffusive process in function of time and distance we need to solve 2nd Ficks Law. This a partial differential equation, with certain condition the solution looks like this:

Where Cs is the concentration in the surface of the solid
Cx is the concentration at certain deep X
Co is the initial concentration of solute in the solid
and erf is the error function
Then we solve right side,

And we need to look up the inverse error function of 0.001964 resulting in: 0.00174055
Then we solve for x:

Explanation:
A.
In a diprotic acid, 2 moles of H+ ions is released. Therefore, number of moles of H+ in a diprotic acid = 2 × number of moles of H+ of monoprotic acid.
B.
Equation of the reaction
2NaOH + H2SO4 --> Na2SO4 + 2H2O
Number of moles of H2SO4 = molar concentration × volume
= 0.75 × 0.0105
= 0.007875 moles.
By stoichiometry, since 1 mole of H2SO4 reacts with 2 moles of NaOH. Therefore, number of moles of NaOH = 2 × 0.007875
= 0.01575 moles.
Molar concentration of NaOH = number of moles ÷ volume
= 0.01575 ÷ 0.0175
= 0.9 M of NaOH.
Atomic number of C is 6. Hence, there are 6 electrons in carbon.
The electronic configuration of carbon is 1s2, 2s2, 2p2
Here, there are 2 unpaired electron. However, C2+ ions have 2 electrons less as compared to C.
Hence, electronic configuration of C 2+ ion is 1s2, 2s2. All the electrons are paired in this system. So there are no unpaired electrons in C 2+ ion.
Answer:
The answer is B.
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.