Answer:
Explanation:
Chemical reactions involve combining different substances. The chemical reaction produces a new substance with new and different physical and chemical properties. Matter is never destroyed or created in chemical reactions. The particles of one substance are rearranged to form a new substance.
Whats the question? Im not sure what your asking
The ML of 0.85 m NaOH required to titrate 25 ml of 0.72m hbr to the equivalence point is calculated as follows
calculate the moles of HBr used
moles = molarity x volume
25 x0.072/1000= 0.0018 moles
write the equation for reaction
NaOH + HBr = NaBr + H2O
from reacting equation the mole ratio between NaOH to HBr is 1:1 therefore the moles of NaOH = 0.0018 moles
volume = moles/molarity
0.0018/0.085 = 0.021 L in Ml = 0.021 x1000=21.18 Ml ofNaOH
<u>Answer:</u> The volume of acid should be less than 100 mL for a solution to have acidic pH
<u>Explanation:</u>
To calculate the volume of acid needed to neutralize, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is HCl
are the n-factor, molarity and volume of base which is NaOH
We are given:

Putting values in above equation, we get:

For a solution to be acidic in nature, the pH should be less than the volume of acid needed to neutralize.
Hence, the volume of acid should be less than 100 mL for a solution to have acidic pH
Answer is: concentration of hydrogen iodide is 6 M.
Balanced chemical reaction: H₂(g) + I₂(g) ⇄ 2HI(g).
[H₂] = 0.04 M; equilibrium concentration of hydrogen.
[I₂] = 0.009 M; equilibrium concentration of iodine.
Keq = 1·10⁵.
Keq = [HI]² / [H₂]·[I₂].
[HI]² = [H₂]·[I₂]·Keq.
[HI]² = 0.04 M · 0.009 M · 1·10⁵.
[HI]² = 36 M².
[HI] = √36 M².
[HI] = 6 M.