The answer is 175184.08 joules
Answer:
5.62 m/s
Explanation:
Newton's law of motion can be used to determine the maximum speed of the elevator. In the question, we are given:
Force exerted by the elevator (R) = 1.7 times the weight of the passenger (m*g)
Thus: R = 1.7*m*g
Distance (s) = 2.3 m
Newton's second law of motion: R - m*g = m*a
1.7*m*g - m*g = m*a
a = 0.7*m*g/m = 0.7*g = 0.7*9.8 = 6.86 m/s²
To determine the maximum speed:



Therefore, the elevator maximum speed is equivalent to 5.62 m/s.
The answer is photocoagulation.
The use of a laser beam to seal leaky blood vessels and to prevent the growth of new ones in diabetic retinopathy is called laser <u>photocoagulation.</u>
<u></u>
What is photocoagulation?
A minimally invasive method used to treat numerous retinal illnesses is photocoagulation of the retina, also known as retinal laser photocoagulation. The retina may expand due to aberrant leaky blood vessels developing across it in a number of disorders. Laser photocoagulation uses thermal energy above 65 °C to burn the retinal tissue by creating thermal burns. This can prevent the retina from being damaged by the bleeding blood vessels. In addition to causing fibrosis, laser photocoagulation can also seal retinal tears. Laser photocoagulation is typically unable to recover already lost vision in cases of retinal disease, but it can slow the progression of the condition, lower the chance of further vision loss, and preserve residual vision. The likelihood of problems following the operation is quite minimal.
To learn more about photocoagulation click on the link below:
brainly.com/question/16016898
#SPJ4
<u></u>
Answer:
Option A is tge correct answer.
Explanation:
The reason for above answer is the slope of acceleration vs time graph shows the velocity as when the acceleration gets positive , the velocity gets increased and when the acceleration gets negative tgen velocity also decreases.
<em><u>hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>