Because liquids cant be condensed the way that gasses can for example in a tank of argon you can put 20 cubic feet because it can be be condensed but you could not fit 20 cubic feet of water because it can not be packed together .
Recall that density is Mass/Volume. We are given the mL of liquid which is volume so all we need is mass now. We are given the mass of the granulated cylinder both with and without the liquid, so if we subtract them, we can get the mass of the liquid by itself. So, 136.08-105.56= 30.52g. This is the mass of the liquid. We now have all we need to find the density. So, let’s plug these into the density formula. 30.52g/45.4mL= 0.672 g/mL. This is our final answer since the problem requests the answer in g/mL, but be careful, because some problems in the future may ask for g/L requiring unit conversions. Also note that 30.52 was 4 sigfigs and 45.4 was 3 sigfigs, and so dividing them required an answer that was 3 sigfigs as well, hence why the answer is in the thousandths place
Answer:
5 mg
Explanation:
If one half life is 4 hours, then 3 half lives is 12 hours.
This means that the sample will decay to 1/8 of its original amount.
So, the answer is 40(1/8) = 5 mg.
Answer:
1. 80g
2. 1.188mole
Explanation:
1. We'll begin by obtaining the molar mass of CH4. This is illustrated below:
Molar Mass of CH4 = 12 + (4x1) = 12 + 4 = 16g/mol
Number of mole of CH4 from the question = 5 moles
Mass of CH4 =?
Mass = number of mole x molar Mass
Mass of CH4 = 5 x 16
Mass of CH4 = 80g
2. Mass of O2 from the question = 38g
Molar Mass of O2 = 16x2 = 32g/mol
Number of mole O2 =?
Number of mole = Mass /Molar Mass
Number of mole of O2 = 38/32
Number of mole of O2 = 1.188mole
Answer:
66.2 % of O
Explanation:
Our compound is the lithium nitrite.
LiNO₂
This salt is ionic and can be dissociated: LiNO₂ → Li⁺ + NO₂⁻
We determine the molar mass:
molar mass of Li + 3 . molar mass of N + 6 . molar mass of O
6.94 g/mol + 3. 14 g/mol + 6 . 16 g/mol = 144.94 g/mol
The mass of oxygen contained in 1 mol of lithium nitrite is:
6 . 16 g/mol = 96 g
So the percentage of oxygen present is:
(96 g / 144.94 g) . 100 = 66.2 %