B is the answer I think hope this helps
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Thus in the reactants, there are 2 atoms of hydrogen and 2 atoms of iodine .Thus there has to be 2 atoms of hydrogen and 2 atoms of iodine in the product as well. Thus a coefficient of 2 is placed in front of HI.
The balanced chemical reaction is:

Answer: C) Tetrahedral
Explanation:
The number of electron pairs is 4 that means the hybridization will be
but as there are three bonding domains and one nonbonding domain, thus electronic geometry is tetrahedral and the molecular geometry will be trigonal pyramidal.
Linear electron geometry is possible when number of electron pairs is 2 and the hybridization will be
.
Trigonal planar geometry is possible when number of electron pairs is 3 and the hybridization will be
.
Trigonal bipyramidal geometry is possible when number of electron pairs is 5 and the hybridization will be
.
Octahedral geometry is possible when number of electron pairs is 6 and the hybridization will be
.
Answer:
19.8m/s
Explanation:
Given parameters:
Mass of the ball = 10kg
Height of the rail = 20m
Unknown:
Velocity at the bottom of the rail = ?
Solution:
The velocity at the bottom of the rail is its final velocity.
Using the appropriate motion equation, we can find this parameter;
V² = U² + 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
the ball was rolled from rest, U = 0
V² = O² + 2 x 9.8 x 20
V = 19.8m/s
The answer is A :) homogeneous!