Hello,
Answer: kilogram
Further explaining: in science is used to measure weight of an object and used for accreditation.
Hope this helps!
Answer:
White light entering a prism is bent, or refracted, and the light separates into its constituent wavelengths. Each wavelength of light has a different colour and bends at a different angle. The colours of white light always emerge through a prism in the same order—red, orange, yellow, green, blue, indigo, and violet.
<span>anwser will be
F = ma
where
F = force exerted on the bullet
m = mass of the bullet = 5 gm (given) = 0.005 kg.
a = acceleration of the bullet
Substituting appropriately,
F = 0.005a --- call this Equation 1
Next working equation is
Vf^2 - Vo^2 = 2as
where
Vf = velocity of the bullet as it leaves the muzzle = 326 m/sec (given)
Vo = initial velocity of bullet = 0
a = acceleration of bullet
s = length of the rifle's barrel
Substituting appropriately,
326^2 - 0 = 2(a)(0.83)
a = 64,022 m/sec^2
the anwser will be
Substituting this into Equation 1,
F = 0.005(64,022)
F =320.11 Newtons
Hope this helps. </span><span>
</span>
For these question, it has two separate equations: 2f(a) and f(2a) .
For f(2a) equations its x=2a, so you must substitute 2a into the f(x) equation
For 2f(a), it means the two time of f(a) equation with x=a, so you substitute a inti f(x) equation first, then you multiply it by 2.
Answer:
If the acceleration is constant, the movements equations are:
a(t) = A.
for the velocity we can integrate over time:
v(t) = A*t + v0
where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:
Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.