<span>(a)
Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get:
18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component.
(b)
To much the same end do we derive the vertical component:
18.0*sin37.5 = v_y = 10.96 ms^-1
Which we then divide by acceleration, a_y, to derive the time till maximal displacement,
10.96/9.8 = 1.12 s
Finally, doubling this value should yield the particle's total time with r_y > 0
<span>2.24 s
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²

F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.
Answer:
The fly travels 2.4 m
Explanation:
Since the Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s, we can find the time until they crash by the formula:
Distance = Speed × Time
Time = Distance /Speed
Time = (100 m) / (1 m/s)
Time = 100 hours
Now, the fly will spend the same amount of time traveling as the steamrollers.
Since the fly moves at a speed of 2.4 m/s and we have a time of one hour the steamroller take to collide, then the fly will go a distance of;
Distance = speed x time = 2.4 × 1 = 2.4 m
To solve this problem we will apply the concept of voltage given by Coulomb's laws. From there we will define the charges and the distance, and we will obtain the total value of the potential difference in the system.
The length of diagonal is given as

The distance of the center of the square from each of the corners is

The potential electric at the center due to each cornet charge is




The total electric potential at the center of the given square is


Al the charges are equal, and the distance are equal to a, then


Therefore the correct option is E.
Answer:
a.3.84m
b.-106.67m/s
c.947.3m/s^2
d.70.17 rad
e.2.5Hz
d.0.4secs
Explanation:
Given x=(7.8)cos[5πrad/s)t+π/3)]
a.Displacement at t=4.4
7.8cos(5π*4.4+π\3)=3.84m
b.velocity
V= dx/dr=-5π(7.8)sin(5πrad/s)t+π\3
at t=4.4
-5π(7.8)sin(5π*4.4+π\3)=-106.67m/s
c.acceleration
a=d^2x/dr^2
-(5π)^2(7.8) cos (5π*t+π\3)
at t=4.4
-(5π)^2(7.8)cos(5π*4.4+π\3)=-947.3m/s^2
d. Phase =(5πrad/s)t+π\3
At t=4.4
5π×4.4+π\3=70.17 rad
e.frequency
Given x= 7.8cos(5πt+π\3
Compare with x=Acos(2πft)
2πft=5πt
F=2.5Hz
f.T=1\f
T=1/2.5=0.4sec