Answer:
3.4 mT
Explanation:
L = 0.53 m
i = 7.5 A
Theta = 19 degree
F = 4.4 × 10^-3 N
Let B be the strength of magnetic field.
Force on a current carrying conductor placed in a magnetic field.
F = i × L × B × Sin theta
4.4 × 10^-3 = 7.5 × 0.53 × B × Sin 19
B = 3.4 × 10^-3 Tesla
B = 3.4 mT
ΔU =
-Wint
Consdier the work of of
interaction is W =m*g*h - equation -1
and the Potential energy U.
Final Potential energy Uf =0
, And the Initial Potential Energy Ui =m*g*h
<span>Now we will write the
equation for a Change in Potential energy ΔU,</span>
ΔU = Uf
- Ui
= 0-m*g*h
<span> ΔU = -m*g*h --Equation 2</span>
Now compare the both equation
<span>Wint = -ΔU</span>
we can rewrite the above
equation
ΔU =
-W.
<span>So our Answer is ΔU = -W. .</span>
<span> </span>
(a)
consider the motion of the tennis ball. lets assume the velocity of the tennis ball going towards the racket as positive and velocity of tennis ball going away from the racket as negative.
m = mass of the tennis ball = 60 g = 0.060 kg
v₀ = initial velocity of the tennis ball before being hit by racket = 20 m/s
v = final velocity of the tennis ball after being hit by racket = - 39 m/s
ΔP = change in momentum of the ball
change in momentum of the ball is given as
ΔP = m (v - v₀)
inserting the above values
ΔP = (0.060) (- 39 - 20)
ΔP = - 3.54 kgm/s
hence , magnitude of change in momentum : 3.54 kgm/s
C.
Hope this helps good luck
Answer:
a = 5.33 [m/s²]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of the forces acting on a body is equal to the product of mass by acceleration.
ΣF = m*a
where:
F = force = 400 [N]
m = mass = 75 [kg]
a = F/m
a = 400/75
a = 5.33 [m/s²]