Answer:

Explanation:
given,
turntable rotate to, θ = 5 rad
time, t = 2.8 s
initial angular speed = 0 rad/s
final angular speed = ?
now, using equation of rotational motion



α = 1.28 rad/s²
now, calculation of angular velocity



hence, the angular velocity at the end is equal to 3.584 rad/s
The first right-hand rule determines the directions of magnetic force, conventional current and the magnetic field. Given any two of theses, the third can be found.
The second Right-Hand Rule determines the direction of the magnetic field around a current-carrying wire and vice-versa<span> </span>
So, assuming that a magnetic field <span>exists and its direction is known and assuming that a charged particle moves in a specific direction through that field with velocity (v(, to determine the direction of force on the particle we should use the second right-hand rule.</span>
Given that,
Capacity = 3.6 gallons per minutes
Convert it into milliliters per seconds
Since, 1 gallon = 3.79 liters
1 liters = 1000 milliliters
Capacity= (3.6*3.79*1000)/(60)
Capacity = 227.4 milliliters per second.
Throw it sideways and try to make it spin around but it needs to be thrown high up then it should kinda glide down
Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.