Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer:
mass of the fish is 8.11 kg
Explanation:
As we know that the frequency of oscillation of spring block system is given as

here we know that the reading of scale varies from 0 to 155 N from length varies from x = 0 to x = 10 cm
Now we have


so now we have


so mass of the fish is 8.11 kg
Answer:
Electromagnetic waves do not require a medium in order to transport their energy. Mechanical waves are waves that require a medium in order to transport their energy from one location to another. ... Sound is a mechanical wave and cannot travel through a vacuum.
Answer:
The nodes and anti nodes would reverse roles.
Explanation:
I believe it has to do with the path differences. If waves are in phase, then the path differences are such that the waves reach the screen with crests superimposing crests and troughs superimposing troughs. This happens when the periods of each wave are equal or the paths themselves differ by a whole number multiple of the wavelength (λ, 2λ, 3λ, ...).
Now make these waves out of phase. Then half of the waves will travel half a wavelength farther than the rest. So the path difference will be 0.5λ, 1.5λ, 2.5λ, ....