For the answer to the question above,
<span>There is nothing in the equations to suggest that the string moves in the x direction so D) v_x(x,t)=0.
</span>
y(x,t) = A sin(kx-omega t)
d{y(x,t)}/d{x} = A k cos(kx - omega t)
It will act upon a buoyant force on the magnitude of which is equal to weight of the fluid
Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
(1)
Where:
- Pressure.
- Volume.
- Molar quantity, in moles.
- Ideal gas constant.
- Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
(2)
If we know that
, then the resulting pressure of the system is:


The resulting pressure is 3 times the initial pressure.
A.
if you have seen a newton's cradle this will make sense.
in order for both of them to travel at the same speed, the balls need to have the same mass and the speed to begin with tocontinue to travel at the same speed because mass can affect the impact of the force on the balls by each other, causing each ball to have different speeds.