Car A will have highest speed is 83.3m/s .
<h3>What is speed ? </h3>
The rate of change of position of an object in any direction.
The S.I unit is m/s . Speed is a scalar quantity it defines only magnitude not direction
.
speed = distance /time
In case of Car A ,
We have given distance 150Km in 3 min ,
First we have convert the distance km to m
150×1000m
then conversion of min to sec
38×60sec
speed = 15000/180
speed = 83.3m/sec
In case of Car B
we have given 800m in 150 min
lets convert the time into second
150×60
Speed = 800/150×60
speed = 0.88m/ s
In case of Car C
We have given here distance 250 Km and time in 8 hours
convert km to m
25000
and time into sec
88×60×60
speed = 0.86m/ s
Hence ,Car A has highest speed amongst them .
To learn more about speed click here
brainly.com/question/7359669
#SPJ9
Answer:
The mass m is 0.332 kg or 332 gm
Explanation:
Given
The platform is rotating with angular speed , 
Mass m is moving on platform in a circle with radius , 
Force sensor reading to which spring is attached , 
Now for the mass m to move in circle the required centripetal force is given by 
=>

Thus the mass m is 0.332 kg or 332 gm
Answer:
You need to give the options but the formula is p=mv
Explanation:
The total distance is 70km.
The total time is 60 minutes or 1 hour.
Speed=Distance÷Time
=70÷1
=70km/h
Well, they're not quite the way Newton expressed it, but out of all this mess of statements, there are two that are correct AND come from Newton's 2nd Law of Motion:
<em>-- The smaller the mass of an object, the greater the acceleration of that object when a force is applied. </em>
<em>-- The greater the force applied, the greater the acceleration.</em>
For the <u><em>other </em></u>statements in the question:
-- <em>Every reaction is equal to the force applied.</em> True; comes from Newton's <u><em>3rd</em></u> law of motion.
-- <em>Forces are balanced when they are equal and opposite.</em> True; kind of a definition, not from Newton's laws of motion.
-- <em>An object at rest or in motion will remain at rest or in motion unless acted upon by an unbalanced force.
</em> True; comes from Newton's <em><u>1st </u></em>law of motion.