The kinetic energy of an object of mass m and velocity v is given by

Let's call

the initial speed of the car, so that its initial kinetic energy is

where m is the mass of the car.
The problem says that the car speeds up until its velocity is twice the original one, so

and by using the new velocity we can calculate the final kinetic energy of the car

so, if the velocity of the car is doubled, the new kinetic energy is 4 times the initial kinetic energy.
Answer:
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater ...
<span>Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a10X (most common) eyepiece lens, we get total magnifications of 40X (4X times10X), 100X , 400X and 1000X.</span>
Answer:
a ) 11.1 *10^3 m/s = 39.96 Km/h
b) T_{o2} =1.58*10^5 K
Explanation:
a)
= 11.1 km/s =11.1 *10^3 m/s = 39.96 Km/h
b)
M_O2 = 32.00 g/mol =32.0*10^{-3} kg/mol
gas constant R = 8.31 j/mol.K

So, 
multiply each side by M_{o2}, so we have

solving for temperature T_{o2}

In the question given,

T_{o2} =1.58*10^5 K
Answer:
1. 8.0kg * m/s
2. The same as before the collision
3. The force will decrease
4. 14 m/s