Answer:
322 kJ
Explanation:
The work is the energy that a force produces when realizes a displacement. So, for a gas, it occurs when it expands or when it compress.
When the gas expands it realizes work, so the work is positive, when it compress, it's suffering work, so the work is negative.
For a constant pressure, the work can be calcutated by:
W = pxΔV, where W is the work, p is the pressure, and ΔV is the volume variation. To find the work in Joules, the pressure must be in Pascal (1 atm = 101325 Pa), and the volume in m³ (1 L = 0.001 m³), so:
p = 60 atm = 6.08x10⁶ Pa
ΔV = 82.0 - 29.0 = 53 L = 0.053 m³
W = 6.08x10⁶x0.053
W = 322x10³ J
W = 322 kJ
Average speed =
(total distance covered)
divided by
(total time spent covering the distance)
As we know that speed of sounds is given as

here we know that
t = 23 degree C
now from above equation we will have


now we also know that distance between two consecutive resonance length is half of the wavelength



now we know that


so frequency will be 786 Hz
Light can be seen as an electromagnetic wave.
What happens when two waves, with the same frequency, superpose is called interference.
If at a certain point two waves arrive both with a crest, we have constructive interference and the amplitudes sum up, reaching the maximum value, resulting in bright spots.
If at a certain point one of the waves arrives with a crest and the other wave arrives with a trough, we have destructive interference, and the two amplitudes cancel out, resulting in dark spots.
Therefore, t<span>he dark bands on the wall are from destructive interference.</span>
I’m not sure if its correct but I think it’s focal Ray point
For concave mirrors, some generalizations can be made to simplify ray construction. They are: An incident ray traveling parallel to the principal axis will reflect and pass through the focal point. An incident ray traveling through the focal point will reflect and travel parallel to the principal axis.