Answer:
≅3666.67 N
Explanation:
Use Newton's 2nd law, F = ma where F=force applied, m = mass of the object,
a = acceleration acquired by the object.
a= (v-u)/t where v = final velocity, u = initial velocity and t = time taken
calculate a = (30-0)/9 ≅ 3.33 m/s2
Then F = 1100×a = 3666.67 N
Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s
Information travels along the axon once an impulse is received. The axon then takes it to the place where it can be sent off to another neuron
<span>dendrite → cell body → axon → axon terminals is the correct answer</span>
<span>If I managed to help you, please make sure to mark my answer as the "Brainliest" answer. Thanks! :)</span>
The distance travel is 69.5 meters.
<u>Explanation:</u>
Given datas are as follows
Speed = 27.8 meters / second
Time = 2.5 seconds
The formula to calculate the speed using distance and time is
Speed = Distance ÷ Time (units)
Then Distance = Speed × Time (units)
Distance = (27.8 × 2.5) meters
Distance = 69.50 meters
Therefore the distance travelled is 69.50 meters.
The first law of thermodynamics states that energy cannot be created nor destroyed. It can be transformed from one form of energy to another, but the energy in an isolated system remains constant.
The answer then would be letter B. False.