Hey there,
Your question states: <span>Debbie places two shopping carts in a cart corral. She pushes the first cart, which then pushes a second cart. What force is being exerted?
based by looking at this statement above about Debbie, I understand that she (pushed) Cart (A) first. And then, she exerted (Cart B) next. From the option's that are listed above, I only see two. But from my own words, not from the only (two) options above, I see that (Debbie first exerts the second cart on to the first cart). This reason would be because the first cart is already in the corral. So then she would put the second one in there, this would mean that the second one would push the other one in there. Which means that the velocity would also be in half.
I hope you grabbed my answer in there.
~Jurgen</span>
We already know the formula:
Voltage = Current * Resistance
In the given question, there are numerous information's that are already given.
Current = 6.2 A
Resistance = 18 ohms
Then
Voltage = 6.2 * 18 Volts
= 111.6 Volt
So, the voltage in the circuit will be 111.6 volts. I hope it helps you.
Answer:
◆ See the attachment photo.
◆ Don't forget to thanks
◆ Mark as brainlist.
Answer:
The current drawn by Horace’s reading glasses is 0.8 A.
Explanation:
Given that,
Resistance of each bulb, R = 2 ohms
Voltage of the system, V = 3.2 volts
These two bulbs are connected in series. The equivalent resistance will be 2 ohms +2 ohms = 4 ohms
Let I is the current drawn by Horace’s reading glasses. Using Ohm's law to find it such that :

So, the current drawn by Horace’s reading glasses is 0.8 A.
Answer:
The new force becomes 4 times the initial force.
Explanation:
The force of attraction or repulsion is given by the relation as follows :

Where
d is the distance between the interacting charges
F is inversely proportional to the distance between charges.
If the distance is halved, d'=(d/2), new force is given by :

So, the new force becomes 4 times the initial force.