Answer:

Explanation:
The Celsius and Kelvin scales are used to measure the temperature of matter. Their scales and unit differences are the same (1 K increase = 1 °C increase), but they have different starting points.
So, the conversion is quite simple and only requires addition because of the different starting points. The formula is:

The boiling point of liquid nitrogen is -195.8 °C. We can substitute this value into the formula.


The boiling point of liquid nitrogen is 77.35 Kelvin.
A specific combination of bonded atoms which always react in the same way, regardless of the particular carbon skeleton is known as the functional group. These are specific groups of atoms or bonds within organic molecules that accounts for the characteristic chemical reactions of those molecules. Examples of functional groups are the Carbonyl group, alkyl Halides, aldehydes and ketones among others.
Answer:
<h3>D)Moon and sun</h3>
Explanation:
Because the gravitational pull of the moon is weaker on the far side of the Earth, inertia wins, the ocean bulges out and high tide occurs.
hope it helps:)
Answer:
0.20 m glucose < 0.40 m NaCl < 0.30 m BaCl2 < 0.50 m Na2SO4.
Explanation:
Step 1: Data given
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = Shows how much the boiling point increases
⇒i = the van't Hoff factor: Says in how many particles the compound will dissociate
⇒ Since all are aqueous solutions Kb for all solutions is the same (0.512 °C/m)
⇒m = the molality
Step 2:
0.20 m glucose
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for glucose = 1
⇒ Kb = 0.512 °C/m
⇒m = 0.20 m
ΔT = 1*0.512 * 0.20
<u>ΔT = 0.1024 °C</u>
0.30 m BaCl2
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for BaCl2 = Ba^2+ + 2Cl- : i = 3
⇒ Kb = 0.512 °C/m
⇒m = 0.30 m
ΔT = 3*0.512 * 0.30
<u>ΔT = 0.4608 °C</u>
0.40 m NaCl
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for NaCl = Na+ + Cl- : i = 2
⇒ Kb = 0.512 °C/m
⇒m = 0.40 m
ΔT = 2*0.512 * 0.40
<u>ΔT = 0.4096 °C</u>
0.50 m Na2SO4.
ΔT = i*Kb*m
⇒ΔT = the boiling point elevation = TO BE DETERMINED
⇒i = the van't Hoff factor for Na2SO4 = 2Na+ + SO4^2- : i =3
⇒ Kb = 0.512 °C/m
⇒m = 0.50 m
ΔT = 3*0.512 * 0.50
<u>ΔT = 0.768 °C</u>
0.20 m glucose < 0.40 m NaCl < 0.30 m BaCl2 < 0.50 m Na2SO4.