Answer : The temperature in kelvins is, 
Explanation : Given,
= 178.5 KJ/mole = 178500 J/mole
= 161.0 J/mole.K
Gibbs–Helmholtz equation is :

As per question the reaction is spontaneous that means the value of
is negative or we can say that the value of
is less than zero.

The above expression will be:



Now put all the given values in this expression, we get :


Therefore, the temperature in kelvins is, 
H20* SOO N34 Thats my answer
Answer:
C. Dry the methylene chloride by removing water
Explanation:
Anhydrous sodium sulfate is known for its high capacity to absorb water, for this reason it is widely used in laboratories as a drying agent.
Sodium sulfate is a neutral molecule so it cannot be used to neutralize and is very stable, so it is difficult to precipitate organic molecules.
Answer:
42.65g
Explanation:
Given parameters:
Mass of K = 4g
Unknown: Mass of KCl
Solution:
Complete equation of the reaction:
2K + Cl₂ → 2KCl
To solve this problem, we know that the reactant in short supply is potassium K and this dictates the amount of products that would be formed. The chlorine gas is in excess and we can't use it to determine the amount of product that would form.
Now, we work from the known to the unknown. Since we know the mass of K given in the reaction, we can simply find the molar relationship between the reacting potassium and the product. We simply convert the mass to mole and compare to the product. From there we can find the mass of KCl that would be produced.
Calculating number of moles of K
Number of moles = 
Number of moles of K =
= 0.103mol
From the given reaction equation:
2 moles of K will produce 2 moles of KCl
Therefore 0.103mol of K will produce 0.103mol of KCl
To find the mass of KCl produced,
Mass of KCl = number of moles of KCl x molar mass
Molar mass of KCl = 39 + 35.5 = 74.5gmol⁻¹
Mass of KCl = 0.103 x 74.5 = 42.65g
Answer: Temperature = T, unknown
Saturated Solution, NH4Cl concentration = 60g/100g H2O = 0.6g NH4Cl/g H2O
Assume density of H2O = 1 g/ml
m = 0.6g NH4Cl/g H2O / 1 g/ml
m = 0.6g NH4Cl/ml
See the table of saturated solutions and identify the temperature at which the concentration of NH4Cl is 60g/100g H2O.
Explanation: The line on the graph on reference table G indicates a saturated solution of NH4CL as a concentration of 60. g NH4 Cl/100. g H2O