Answer: The mass of the sample will be 1417.7 grams.
Explanation:
We are given:

This means that 1 mole of NaCl has an enthalpy of fusion of 30.2 kJ
1 mole of NaCl has a mass of 58.44 grams.
So, 30.2 kJ of heat is require for a mass 58.44 grams of NaCl
So, 732.6 kJ of heat will be required for =
= 1417.65 grams of NaCl.
Hence, the mass of NaCl sample will be 1417.7 grams.
Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
![K_c=\frac{[Isobutane]}{[Butane]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIsobutane%5D%7D%7B%5BButane%5D%7D)

x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M

Where v is the volume(in L) and t is the temperature(in °K)

Answer:
snetence
Explanation:
nikkak youk dxmbk aslk istgk
Answer:

Explanation:
First of all we need to calculate the heat that the water in the cooler is able to release:

Where:
- Cp is the mass heat capacity of water
- V is the volume
is the density


To calculate the mass of CO2 that sublimes:

Knowing that the enthalpy of sublimation for the CO2 is: 

