Answer:
9 moles of oxygen are produced from 6 moles of potassium chlorate.
Explanation:
Given data:
Number of moles of KClO₃ = 6 mol
Number of moles of oxygen produced = ?
Solution:
Chemical equation:
2KClO₃ → 2KCl + 3O₂
now we will compare the moles of KClO₃ and O₂.
KClO₃ : O₂
2 : 3
6 : 3/2×6 = 9
Thus, 9 moles of oxygen are produced from 6 moles of potassium chlorate.
Answer:
ethanol is already at the ethanol's boiling point: (0.826 kJ/g) x (70.05 g) = 57.8613 kJ = 5.79 x 10^4 J.
Missing: 45.65 | Must include: 45.65
Explanation:
<span> under extreme heat or pressure
crystallize from magma
precipitate from a solution reaction of hot mixture with water and a dissolved substance</span>
Answer:
physical change because the gaseous water is chemically the same as the liquid
Explanation:
Matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are; solid, liquid and gas.
A physical change can be defined as a type of change that only affects the physical form of a chemical substance (matter) without having any effect on its chemical properties. Thus, a physical change would only affect the physical appearance and properties of a chemical substance (matter) but not its chemical properties.
This ultimately implies that, a physical change result in a change of matter from one form or phase (liquid, solid or gas) to another without a corresponding change in chemical composition.
Hence, the boiling of water is considered to be a physical change because the gaseous water is chemically the same as the liquid i.e there isn't any changes in chemical composition of water when boiling.
<u>Answer:</u> The half life of the sample of silver-112 is 3.303 hours.
<u>Explanation:</u>
All radioactive decay processes undergoes first order reaction.
To calculate the rate constant for first order reaction, we use the integrated rate law equation for first order, which is:
![k=\frac{2.303}{t}\log \frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%20%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken = 1.52 hrs
= Initial concentration of reactant = 100 g
[A] = Concentration of reactant left after time 't' = [100 - 27.3] = 72.7 g
Putting values in above equation, we get:

To calculate the half life period of first order reaction, we use the equation:

where,
= half life period of first order reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the sample of silver-112 is 3.303 hours.