Answer:
Vertical velocity decreases.
Explanation:
The motion of the ball is a projectile ball, which consists of two independent motions:
- a horizontal motion, with constant velocity
- a vertical motion, with constant acceleration g=9.8 m/s^2 towards the ground
In the vertical motion, there is a constant acceleration directed downward: this means that the vertical velocity decreases as the ball goes higher. In fact, it decreases following the equation

And it decreases until the ball reaches its maximum height, then it starts increasing again.
According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:
H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.
So the law of conservation of heat tells that:
Sensible heat of Z + Sensible heat of container = Sensible heat of X
Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.
Answer:
didn't understand your question

Where r is the radius of balloon.
Here mass of woman = 68 kg
Mass of air displaced by a balloon with volume V = 1.29*V
Mass of helium inside balloon = 0.178*V
Total mass to be lifted by balloon = 68 +0.178*V
Buoyant force = 1.29V-0.178V=1.112V
So we have 1.112 V = 68+ 0.178*V
0.934 V = 68
V = 72.81 
\frac{4}{3} \pi r^{3}[/tex]= 72.81
r = 2.59 m
So radius of helium balloon = 2.59 m
Combustion is the answer i just took the test