Answer:
Explanation:
Radius of dee, r = 8 mm = 0.008 m
Electric field, e = 400 V/m
Magnetic field, B = 4.7 x 10^-4 T
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
(a) Let v is the speed of electrons.


v = 661098.9 = 661099 m/s
(b)

e / m = 1.76 x 10^14 C / kg
(c) Let K be the kinetic energy
K = 0.5 x mv²
K = 0.5 x 9.1 x 10^-31 x 661099 x 661099
K = 1.99 x 10^-19 J
K = 1.24 eV
So, the potential difference is
V = 1.24 V
(d) if the acceleration voltage is doubled
V = 2 x 1.24 = 2.48 V
So, Kinetic energy
K = 2.48 eV
K = 2.48 x 1.6 x 10^-19 = 3.968 x 10^-19 J
Let v is the speed
K = 0.5 x mv²
3.968 x 10^-19 = 0.5 x 9.1 x 10^-31 x v²
v = 933856.5 m/s
Let the new radius is r.


r = 0.0113 m = 1.13 cm
Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

(1) The image of an object placed further from the lens than the focal point will be upside down and smaller than the object.
(2) When light rays reflect, they bounce back.
(3) Images formed by a concave lens will look magnified.
(4) When light rays enter a different medium, they bend.
<h3>
1.0 Object placed further from the lens than the focal point</h3>
The image of an object placed further from the lens than the focal point will be diminished and inverted.
Thus, the correct answer will be "upside down and smaller than the object".
<h3>2.0 What is reflection of light?</h3>
The ability of light to bounce back when it strike a hard surface is known as refection.
<h3>3.0 Image formed by concave lens</h3>
A concave lens is diverging lens is usually virtual, erect and magnified.
<h3>4.0 Refraction of light</h3>
The change in speed of light when it travels from medium to another medium is known as refraction. Refraction is also, the ability of light to bend around obstacles.
Learn more about reflection and refraction of light here: brainly.com/question/1191238
Answer
given,
wavelength (λ)= 500 n m
thickness of film= 10⁻⁴ cm
refractive index = μ = 1.375
distance traveled is double which is equal to 2 x 10⁻⁴ cm
a) Number of wave


N = 2.91
N = 3
b) phase difference is equal to
Reflection from the first surface has a 180° (½λ) phase change.
There is no phase change for the 2nd surface reflection and there is no phase difference for the 2nd wave having traveled an exact whole number of waves.
net phase difference = 
= 270°
The time component is needed. The acceleration is the change of velocity divided by the time in when this change of velocity happens.