Answer:
O larger than the object and real
Explanation:
As we know by the formula of mirror

here we know that

so we have

so we have

so magnification is given as


so here we have

so image will be larger than object and real
The resistance of two things in series is the SUM of their individual resistances. So the resistance of two bulbs in series is <u><em>double</em></u> the resistance of one bulb.
(If they're in parallel, their combined resistance is <u><em>1/2</em></u> the resistance of one bulb.)
So two bulbs <em>in series</em> is the greater resistance. <em>(a) </em>
D. How high do the sound waves go
(a) The capacitance of the capacitor is:

and the voltage applied across its plates is

The relationship between the charge Q on each plate of the capacitor, the capacitance and the voltage is:

and re-arranging it we find the charge stored in the capacitor:

(b) The electrical potential energy stored in a capacitor is given by

where C is the capacitance and V is the voltage. The new voltage is

so the energy stored in the capacitor is
Answer:
All of them: change velocity, accelerate, change position
Explanation:
We can answer this question by using Newton's second law:
F = ma
where
F is the net force on the object
m is the mass of the object
a is the acceleration
We notice that when there is an unbalanced force on the object,
, and therefore

whcih means that the object will accelerate.
But acceleration is the rate of change of velocity, v:

And so,

which means that the object will change velocity.
If the object is changing velocity, this means that it is also moving: therefore, the position of the object must be changing, so also the option "change position" is correct.