For i: 33mL
For ii: 87-88mL
For iii:22.3mL
The answer is B.) Freezing of water
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)
Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/