<span>R= 8.314 J/mol K
T= 273 + 102 = 375K</span><span>
= (3/2) x 8.314 x 375 = 4680 J/mol</span>
Reason1: electrons on farther layers become free easyer
2nd reason: volume of atoms grows (from Helium to Xeon) so instead of boyle-mariot law equation (PV=vRT) is more accurate to use van der walls equations that adds to the boyle-mariot equation the volume occupied by the atoms of the gas to the volume of the space between the atoms P(Vm-b)=vRT
Answer is: <span>c. Fe</span>₃<span>O</span>₄<span>.
</span>ω(Fe) = 72,360%.
ω(O) = 100% - 72,36% = 27,64%.
For example, if we the mass of compound is 100 g:
m(Fe) = 72,36 g.
n(Fe) = m(Fe) ÷ M(Fe).
n(Fe) = 72,36 g ÷ 55,85 g/mol.
n(Fe) = 1,296 mol.
n(O) = 27,64 g ÷ 16 g/mol.
n(O) = 1,727 mol.
n(Fe) : n(O) = 1,296 mol : 1,727 mol.
n(Fe) : n(O) = 1 : 1,33 or 3 : 4.