Answer:
(d) ATP molecules are produced in the cytosol as glucose is converted into pyruvate.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
If something is traveling at 20 m/s constant speed AND its direction isn't changing, then its velocity is constant. Another way to say that is: Its acceleration is zero. Zero acceleration means zero NET force acting on the object, or a group of BALANCED forces acting on it, also called EQUILIBRIUM. The required answer is: YES.
If a real projectile is launched, the force of gravity acts on it vertically downward. There's no upward force acting on it to balance gravity. Therefore, the forces on the projectile are NOT balanced, there IS a net vertical force on it, and it's NOT in equilibrium. Too bad.